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Abstract
A practical method of inverse scattering is proposed to determine a finite-range
scattering potential from phase-shift data evaluated at a set of discrete energies.
By using the asymptotic behaviour of the phase shifts and the connection
between short- and long-wavelength scales, a relatively few input data are found
to be adequate. The method works well for repulsive and moderately attractive
potentials, useful in many applications.

PACS numbers: 02.30.Zz, 11.80.Et, 03.65.Nk

1. Introduction

A problem of interest in inverse scattering is to reconstruct a central potential v(r) from the
phase shift δ�(ω) for angular orbital momentum � given by the solution of the scattering
equation

d2f�(r, ω)

dr2
−

{
�(� + 1)

r2
+ v(r) − ω2

}
f�(r, ω) = 0, (1)

where ω2 is the scattering energy. As r → ∞, the wave function may be written in the form

f�(r, ω) → exp{−i(ωr − �π/2)} − exp{i[2δ�(ω) + ωr − �π/2]}.
The phase shift can be deduced from experimental measurements and the question is whether
it determines the potential. For sufficiently deep attractive potentials, bound states can exist,
and Bargmann [1, 2] and others [3–6] showed that their energies are required as well.

With an infinite set of input information, these classic results in theory solve the problem.
In practice, phase-shift data are available only for finite ranges of energies and assumptions
must be made about v(r) in order to recover it. One approach is to assume a functional form for
v(r) and fit the parameters [7]. Alternatively, one may take v(r) = v0(r) + ∑

i civi(r), where
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v0(r) is some known approximation, and the sum expresses the small corrections in terms of
a finite number of known basis functions vi(r) and unknown coefficients ci to be found by
perturbative iteration [8, 9]. This implies further assumptions; otherwise, one needs to invoke
regulators to control the short-wavelength behaviour [10], a strong assumption on smoothness.

In this work, we consider inversion based on a different premise: that the potential has
a finite range a, appropriate in many situations including nuclear physics. For this class of
problems, inversion can be achieved using two related sets of input: a finite number of phase
shifts sampled at a set of discrete points ωj and the average of v(r) that can be obtained from the
asymptotic form of δ�(ω). It is known that bound-state information is not always required in
recovering the potential in inversion [11] and scattering data alone may provide the complete
information. The convenience of not having to rely on bound-state data, nor a functional
form nor an approximate initial estimate v0(r), makes our method complementary to the other
approaches. Our result parallels an existing algorithm [12], and the formalism presented here
is close to the classic one for spectral inversion [5, 13].

As it stands, the method has several difficulties when the scattering potential is strongly
attractive and further improvements are needed. By taking into account the coupling between
long and short wavelengths, the applicability of the method has been extended to a much wider
range of potentials. This paper shall deal mainly with the extensions made and, to illustrate
the essential points, the discussions are restricted to S-waves for simplicity. Generalization to
non-zero angular momentum will be given in a separate publication that includes applications
to realistic scattering between nuclei. Our method is applicable to a large variety of finite-range
potentials; however, it has only been extensively tested on those that tend to zero smoothly as
r → a and some of the details may be specific to this class of potentials.

In section 2, the notation is defined by briefly reviewing the particular inverse-scattering
approach followed. Extensions to the method are given in section 3 in terms of test cases that
mimic realistic scattering situations. In the conclusion in section 4, we shall also return briefly
to the more general situation of angular momentum � > 0.

2. Formalism

For S-wave and replacing r by x, (1) simplifies to

−∂2
xf(x, ω) + v(x)f(x, ω) = ω2f(x, ω) (2)

with the potential v(x) defined on a half-line 0 � x < ∞ and v(x > a) = 0. The boundary
conditions are f(0, ω) = 0 and f ′(0, ω) = 1 (′ ≡ ∂x), the latter a normalization convention.
In the place of phase shifts, consider

f ′(a, ω)

f(a, ω)
≡ µ(ω) = ω cot(ωa + δ(ω))

as the input. Subject to technical assumptions about the validity of (i) truncating an infinite
matrix system to size N, (ii) invertibility of the resultant N×N matrix and (iii) taking N → ∞,
which are verified in all examples studied, we show that v(x) can be recovered from a discrete
set of µ(ωj) together with the average of v(x) given by δ(ω) as ω → ∞.

The algorithm will rely on a known comparison potential V(x), for which the analogue of
(2) is

−∂2
xF(x, �) + V(x)F(x, �) = �2F(x, �),

where F(x, �) satisfies the same boundary conditions as f(x, ω) at x = 0 and can be calculated
once V(x) is specified.
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Following Gel’fand and Levitan [5], f(x, ω) and F(x, ω) are related by an integral equation

f(x, ω) = F(x, ω) +
∫ x

0
K(x, y)F(y, ω) dy, (3)

where K(x, y), defined for 0 � y � x � a, unique and independent of ω, satisfies

[−∂2
x + ∂2

y + v(x) − V(y)]K(x, y) = 0 (4)

with the boundary conditions

K(x, x) = 1

2

∫ x

0
[v(y) − V(y)] dy, K(x, 0) = 0. (5)

The idea, in analogy with spectral inversion [13], is to use the phase shift to determine the
Cauchy data

H(1)(y) ≡ K(a, y), H(2)(y) ≡ a∂xK(a, y).

These serve as the boundary conditions to start a solution of (4), thereby determining v(x)

from (5).

2.1. Cauchy data

From (3) and its derivative, and setting f ′(a, ω) = µ(ω)f(a, ω),

∂xF(a, ω) + K(a, a)F(a, ω) +
∫ a

0
F(y, ω)∂xK(a, y) dy

= µ(ω)

[
F(a, ω) +

∫ a

0
K(a, y)F(y, ω) dy

]
.

Thus, similar to (11) of [14]3, we get∫ a

0
dy [−µ(ω)H(1)(y)F(y, ω) + a−1H(2)(y)F(y, ω)]

= [µ(ω) − H(1)(a)]F(a, ω) − F ′(a, ω) ≡ h(ω). (6)

The constant H(1)(a) is given by

H(1)(a) = K(a, a) = 1

2

∫ a

0
(v − V ) dy ≡ a

2
(〈v〉 − 〈V 〉),

where 〈· · ·〉 denotes the average over the interval [0, a]. The value of 〈V 〉 is known and, for a
smooth v(x), a WKB analysis gives

〈v〉 = −2

a
lim

ω→∞ ωδ(ω), (7)

which can be determined from the asymptotic phase-shift data.
Next, sample µ(ω) at �(1)

j and �
(2)
j where F(a, �(1)

j ) = 0 and F ′(a, �(2)
j ) = 0. Evaluating

(6) at these two sets of frequencies give

−µ
(1)
j 〈H(1)|F(1)

j 〉 + a−1〈H(2)|F(1)
j 〉 = h

(1)
j ,

−µ
(2)
j 〈H(1)|F(2)

j 〉 + a−1〈H(2)|F(2)
j 〉 = h

(2)
j ,

(8)

3 In [14], the corresponding equation is evaluated at the sequence of transmission eigenvalues of the system. Our (6)
is valid for any ω, and immediately below we take two sequences of our choice, �

(1)
j and �

(2)
j .
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where we have used the shorthand, for α = 1 and 2,

F
(α)
j (y) = F(y, �(α)

j ), µ
(α)
j = µ(�

(α)
j ),

h
(α)
j = h(�

(α)
j ), 〈G|F 〉 ≡

∫ a

0
G(x)F(x) dx.

These equations are independent of the normalization of F
(α)
j (y) and, henceforth, we

let 〈F(α)
j |F(α)

j 〉 = 1. As eigenfunctions of self-adjoint systems, each set {F(1)
j (y)}∞j=1 and

{F(2)
j (y)}∞j=1 is complete over [0, a], so we can expand

H(1)(y) =
∑

j

ajF
(1)
j (y), H(2)(y) =

∑
j

bjF
(2)
j (y). (9)

On inserting complete sets, (8) becomes

−µ
(1)
j aj + a−1

∞∑
k=1

bkMkj = h
(1)
j , −µ

(2)
j

∞∑
k=1

akMjk + a−1bj = h
(2)
j , (10)

where

Mkj ≡ 〈F(2)

k |F(1)
j 〉

is the transformation matrix between the Dirichlet and Neumann bases.
To proceed, we can first eliminate bj from the two equations in (10) and obtain

−µ
(1)
j aj +

∞∑
l=1

Njlal = cj , (11)

where

Njl =
∞∑

k=1

MklMkjµ
(2)

k , cj = h
(1)
j −

∞∑
k=1

h
(2)

k Mkj (12)

are known quantities. By truncating the system to J equations, the J unknowns aj are obtained
by solving (11) and then bj from (10). These coefficients in turn give H(1)(y) and H(2)(y)

using (9). With these as boundary conditions, K(x, y) is found by solving the partial differential
equation (4), and then v(x) = 2[dK(x, x)/dx] +V(x) from (5). As a computational algorithm,
we use the successive approximation scheme [13]. The convergence is uniform [15] and the
solution is unique [16]. These steps are the same as in spectral inversion [6, 13].

Some comments are in order to clarify a few detailed points of the formalism. Firstly, there
may not be very much freedom in choosing the sampling frequencies �

(α)
j . The completeness

requirement, coupled with the need to avoid sampling bound states when the potential is
sufficiently deep, rules out many possibilities. Secondly, for certain values of a, it is possible
that some µj become infinite. In such cases, the formalism remains correct as both sides
of, for example, (8), can be divided by µj . In practice, it is more convenient to avoid the
problem by making a slightly different choice of a. Thirdly, it may be difficult to prove that
the system (11) is non-singular. However, it is dominated by the diagonal elements and, in
all our investigations, we have not encountered the problem in matrix inversion. We note that
the basis functions F

(1)
j (y) and F

(2)
j (y) are complete, so the expansion (9) is rigorous, and the

determination of the coefficients aj and bj will give the Cauchy data and hence lead to an
inversion. The derivation of (11) for the coefficients is also rigorous, so the only remaining
issue—which we regard as a reasonable conjecture—is that truncation of (11) at finite N leads
to an invertible system, and the limit N → ∞ correctly gives a solution to the original infinite
system. In numerical test cases, this procedure has always worked well.
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In principle, this solves the inversion problem; in practice, one needs an algorithm that is
numerically stable and accurate using only a modest value for J , (half of ) the number of input
phase shifts. This will be the subject for the rest of this paper.

2.2. Choice of comparison potential

It suffices to consider a constant comparison potential V(x) = V0. Then

F
(α)
j (y) = (2/a)1/2 sin q

(α)
j y,

where

q
(1)
j = j(π/a), q

(2)
j = (j− 1

2 )(π/a)

and the frequencies to be sampled are

(�
(α)
j )2 = (q

(α)
j )2 + V0.

With this choice of V(x), the matrix Mkj can be evaluated explicitly:

Mkj = (−1)j+k+1 2

π

j

(k − 1/2)2 − j2
.

For any choice of V(x), each of the sets {F(1)
j } and {F(2)

j } remains complete, and the above
algorithm works in theory. In practice, two considerations limit the choice. Firstly, the
reference potential cannot be strongly attractive, to ensure (�

(α)
j )2 > 0; otherwise one would

need to sample δ(ω) at imaginary values of ω. Secondly, if V(x) is very different from v(x),
f(x, ω) and F(x, ω) are no longer close to each other and the integral transform (3) differs
substantially from unity. In such cases, the solution may become numerically unstable. Similar
considerations apply in spectral inversion, where one typically chooses 〈V 〉 = 〈v〉. The second
requirement cannot be satisfied when v(x) is strongly attractive and other methods are needed
to stabilize the calculation. This is addressed in section 3.

2.3. Comparison with spectral inversion

The approach we take here has a number of significant differences compared with the classic
method for spectral inversion [5]. In spectral inversion, the input data for the unknown potential
v(x) are evaluated at the Dirichlet and Neumann eigenvalues ω

(α)
j , leading to hybrid functions

F(α)(x, ω(α)
j )—the functional form is determined by V(x), but the values of ω are determined

by v(x). Thus, their completeness is a nontrivial matter [17], and relies on V(x) and v(x) being
close; these functions are not orthogonal either. The resulting equations, roughly corresponding
to (8), are on the other hand decoupled and simple. In our present case, the corresponding
functions are F(α)(x, �(α)

j )—both the functional form and the values of ω are determined by
V(x); so they are trivially complete and orthogonal. However, the two equations in (8) become
coupled, and the non-diagonal transformation matrix Mkj makes it necessary to consider the
truncation with care.

3. A practical algorithm

The method outlined in the previous section to find the underlying scattering potential from
phase-shift data works in principle. Difficulties in applications, however, arise when the
potential is strongly attractive and the number of available input phase shifts is limited. We
shall illustrate here the necessary extensions in practical situations using specific examples.
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1
x

v(x)

-5

0.5

0

0

Figure 1. A potential with zero mean reconstructed from phase shifts. Circles are the calculated
results for v(x) using J = 4 terms in the inversion. The result at x = 0 is greatly improved by
increasing J to 8 (not shown). For comparison, the original potential u(x) is indicated by the
solid line.

For this purpose, we use as input a set of δ(ω) generated from some known potential u(x).
By comparing the recovered v(x) with the original u(x), it is possible to see how well the
method works and the improvements required. To obtain the input phase shifts, (2) is solved
numerically using a fourth-order Runge–Kutta method, with a grid size 10−5a, where [0, a] is
the range of interest. The matrix equations involved have dimension J . The input thus consists
of only 2J values of δ(ω) together with the value of 〈v〉 obtained from the asymptotic phase
shift.

Without loss of generality we take a = 1. A truncated Woods–Saxon potential with a shift
v0 is used,

u(x) =
{

U0

1 + exp[(x−R)/s]
+ v0

}
�(1−x),

where R is the radius and s the surface diffuseness of the well. The unit step function �(1−x)

ensures that u(x > 1) = 0. The form of u(x) is close to that encountered in nuclear scattering,
for example, in [7], and the comparisons should provide useful guidance for actual applications.

To highlight the importance of both the need and the means to reduce the number of
necessary input phase shifts, three test cases with U0 = −10, −40 and −80 are discussed
below. In all cases, R = 0.3 and s = 0.1.

3.1. Examples with 〈v〉 � 0

As a start, let us reassure ourselves that the inversion method does work for relatively weak
potentials by applying to a case with U0 = −10, R = 0.3, s = 0.1, very similar to those
normally used to demonstrate new inversion algorithms. Figure 1 shows the results with v0

adjusted to make 〈u〉 = 0. Even with J = 4 terms the inversion is very accurate (except
for x ≈ 0). With more terms, for example, J = 8, even the x = 0 result is satisfactory. We
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-40

-20

0

0.50
x

v(x)

1

Figure 2. Inversion for a moderately attractive potential, U0 = −40 and v0 = 0; crosses are the
results with J = 20, α1 = −6.096 and α3 = 0; circles, those with J = 8, α1 = −6.096 and
α3 = 115.6. For comparison, the original potential is indicated by the solid line.

conclude from the example that, for smooth, shallow potentials, inversion is a relatively simple
problem. We shall return at the end of this section to a broader category of potentials.

3.2. Moderately attractive potentials and an improved algorithm

In realistic applications, the potential is usually stronger and most inversion techniques have
difficulties in such cases. To demonstrate this point, we show in figure 2 a deeper Woods–
Saxon potential with U0 = −40 (and the same R = 0.3 and s = 0.1) and v0 = 0. Here 〈v〉
is significantly negative and the potential is sufficiently deep to have one bound state. With
V0 = 0, it takes J � 100 before any reasonable results can be obtained (not shown). Only
very limited improvements can be achieved by adjusting the comparison potential V(x): since
v(x) is attractive, a negative V(x) should be used. On the other hand, V(x) cannot be made
too attractive, otherwise there will be bound states (and, thus, the need to sample imaginary
frequencies, as mentioned earlier). The alternative of greatly increasing the value of J is not
desirable either, as it implies the need for input data at very high scattering energies.

Let us re-examine (11). With only 2J input quantities, the infinite set of equations, as
well as the sums in these equation, must be truncated to J and this is valid only if

aj ≈ 0 (13)

for j > J . In appendix A, we show that, as j → ∞,

aj = (−1)j+1
√

2
α1

jπ
+ O(j−3), (14)

where

α1 = 1
2 (〈v〉 − 〈V 〉). (15)

Thus aj ∼ j−3 if 〈v〉 and 〈V 〉 are matched, but aj ∼ j−1 otherwise. In the latter case, truncating
the sums (9) using a small J value would be inaccurate. Since it is not always practical to use
larger J values, one needs to devise a way to ‘correct’ for the higher-order (j > J) phase shifts
we do not wish to include explicitly as input data.
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0

-80

x

v(x)
-40

0.5 10

Figure 3. Inversion for a potential with U0 = −80 and v0 = 0. Crosses are the results with
α1 = −12.19, α3 =0 and J =70; circles with α1 =−12.19, α3 = 687.19 and J =30. The original
potential u(x) is shown as the solid line for comparison.

To this end, let us define

āj ≡ (−1)j+1
√

2
α1

jπ
, 	aj ≡ aj − āj.

In terms of 	aj , (11) becomes

−µ
(1)
j 	aj +

∞∑
l=1

Njl	al = cj + µ
(1)
j āj −

∞∑
l=1

Njlāj.

Truncation of the sum on the left-hand side of the equation now only requires

	al ≈ 0

for l > J , a weaker condition compared with (13) since 	aj ∼ j−3. Moreover, the infinite
sum for H(1)(y) in (9) can be written as

∞∑
j=1

ajF
(1)
j =

∞∑
j=1

ājF
(1)
j +

∞∑
j=1

	ajF
(1)
j ,

where the first term can be evaluated analytically (appendix B). Since only the second sum
needs to be truncated to J , the error is much smaller. The result of the new scheme with J = 20
and α1 = − 6.096 [= 1

2

∫ 1
0 u(x) dx] is shown as crosses in figure 2. The improvement achieved

with only one extra degree of freedom α1 is quite significant, demonstrating the need to correct
for large-j terms.

3.3. More than one asymptotic coefficient

For deeper potentials, the use of a single asymptotic coefficient, as done in the previous
example, is still inadequate. To illustrate this point, we consider next a case with U0 = −80
(and the same R = 0.3, s = 0.1 and v0 = 0). With α1 = −12.19 and a comparison potential
V0 = 0, the result, shown as crosses in figure 3, is inaccurate even with as many as J = 70
terms.
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To make further progress, we generalize (14) by using K coefficients4. Define

āj = (−1)j+1
√

2
K∑

k=1

α2k−1

(jπ)2k−1
, (16)

where α1 is known from (15) and (7). For arbitrary potentials, there does not seem to be any
natural way to determine α3, . . . , α2K−1 a priori as done for α1. The alternative is to obtain
their values self-consistently. Let us illustrate this point with K = 2. That is, we include,
besides α1, an additional coefficient α3. Starting with an arbitrary initial estimate of α3 (e.g.
α3 = 0), the coefficients 	aj and, hence aj , are solved by truncating the matrix equations after
J terms. The values of aj for higher j values, say J ′ � j � J , are fitted to (16) to obtain an
improved value α′

3. The calculations are repeated using α′
3. The procedure defines a mapping

α′
3 = T(α3) whose fixed point is sought.

Once we have the correct value of α3, it is used in conjunction with that of α1 to obtain
coefficients aj and bj , and thence the Cauchy data H(α)(y), in a manner similar to section 3.2.
The explicit expressions are given in appendix B. As seen in figure 3, the inversion result with
α3 included is far superior to those without, even though J is much reduced. The same is true
for the U0 = −40 case in figure 2: by introducing the α3 coefficient the J value is reduced
from 20 to 8 without sacrificing the accuracy.

It is useful to give some heuristic estimates for the improvement expected in the presence
of coefficients α1, α3, etc. The error in using a naive truncation (K = 0) after J0 terms is
∼ |α1|(J0π)−1; the error in using K parameters up to α2K−1 and truncating after JK terms is
∼ |α2k+1|(JKπ)−2K−1. These would be comparable in accuracy if

|α1|(J0π)−1 ∼ |α2K+1|(JKπ)−2K−1.

Using (A.2), this reduces to

(J0π)−1 ∼ (a/β)2k(JKπ)−2K−1,

where β is the shortest length scale in the problem (see appendix A).
Consider the example used in figure 3. The value of β ∼ 0.1, giving a/β ∼ 10. Since

the case does not quite satisfy the J � a/β criterion, the estimates can only provide a rough
guidance. To reach the same accuracy as achieved by J2 = 30 shown in the figure, it will take
J1 on the order of several hundred (rather than 70 represented by the crosses). If α1 is also
taken to be zero, it would take J0 ∼ |α1|/|α3|J2

2 π2—around a few times 104—to reach even
the level given by J1 = 70. (The same arguments show also that it would take J0 � 100 for
any success in the U0 = −40 case of figure 2.) For deeper potentials, it may be necessary to
go to K = 3 and higher to keep the input phase shifts to reasonable numbers.

The importance of keeping the J value to a minimum may be seen from the following
arguments. With J terms, the highest energy E at which phase-shift data are required
would be

E ∼ h̄2

2m

(
Jπ

a

)2

.

Using mc2 = 2000 MeV and a = 10 fm, appropriate for α–α scattering, yields E ∼ J2 MeV.
Since nuclear scattering experiments, for example, are seldom carried out to GeV energy
scales, either because of accelerator limitations or difficulties in resolving the elastic results
from the large number of open inelastic channels, one is limited to J ∼ 30. The possibility

4 It is readily shown from the partial differential equation satisfied by K(x, y) that this expansion has only odd powers
2k − 1 and the signs alternate with j.



9510 T S Lo et al

of approximating the large-j terms using asymptotic coefficients αk is therefore essential in
applications.

For potentials that are oscillatory in x or possess singularities, e.g. at x = 0, it is clear
that more input data are needed to specify their detailed structures. On the other hand, even
with limited information, the Cauchy data should be able to indicate the presence of such
behaviour in terms of the j dependence of aj , which should itself give warning when more
data are needed.

4. Conclusion

We have shown that a finite-range potential v(x) can in principle be recovered from the phase
shift δ(ω) sampled at a reasonable number of discrete values ωj , together with its asymptotic
behaviour as ω → ∞. The amount of available input information is an important practical
consideration in inversion studies. Often, scattering measurements can only be carried out
over a finite range of energies and thus the experimental input for recovering the underlying
potential is limited. The need of input to very high scattering energies may be one reason why
inversion techniques are seldom used directly in certain applications.

In terms of our approach, the number of input phase shifts translates into the number of
coefficients aj and bj that can be calculated to determine the Cauchy data H(α)(y), the boundary
conditions to solve the partial differential equation (4) and thence the potential v(x). Since
the higher-order coefficients cannot be simply ignored, we make use of the coupling between
short and long wavelengths to generate the necessary corrections to the Cauchy data and this
allows recovery of potentials that are sufficiently deep to contain one or more bound states. It
is well known that the formal inversion problem has a unique solution [16], but the exclusion
of high-energy data in effect cuts off information on short-wavelength scales. Therefore, there
can be other solutions that differ only in the short-wavelength features5, but these differences
are not usually significant physically.

In fact, our method is complementary to other inversion approaches. Fitting is useful
where the form of the potential is available and iterative perturbation is powerful when v(x) is
approximately known. In our approach, v(x) is assumed to have finite support, but otherwise
no assumptions are made about either the functional form or the value of v(x). (The mean value
〈v〉 is needed, but is determined from the data and not assumed a priori.) It could therefore
provide a different perspective, especially in exploring degrees of freedom that might otherwise
be implicitly ruled out.

We have restricted attention in this paper to S-waves so as to give a clear illustration of
the method itself in the simplest context. The only additional work for � > 0 is the purely
technical one related to the angular momentum barrier term in (1). This, in turn, requires
the addition of x−2 and y−2 terms in (4). As a result, the numerical solutions to the partial
differential equation must be handled with more care. On the other hand, since the angular
momentum barrier is repulsive, the effective potential for an attractive well, v(r) + �(� + 1)/r2,
is shallower than the corresponding S-wave case, making it easier to carry out the inversion
calculation itself. (For repulsive potentials, there are no problems either way.) As a first
application, we are considering α–α scattering where extensive data are available. Other spin-
0 scattering can also be examined in the same way and the results will be presented separately
with the necessary specialization to the nuclear case. Extensions to non-spin-0 scattering are
also under investigation. Inverse scattering is, however, a problem encountered in many fields

5 If we use say 2J data points, then consider a potential that is the one inverted plus a small correction, where the latter
is a Fourier series on [0, a] with L coefficients, with L > 2J , clearly the coefficients cannot be uniquely determined.
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other than nuclear physics and the algorithm presented here has much wider implications than
the immediate applications we have in mind.

Technically, it is more difficult to obtain the potential shape for r ≈ 0, as F�(r) are small
near the origin for � > 0, and any numerical uncertainties in the calculations are likely to be
amplified. However, the shape very close to the origin is unimportant in practical applications,
as the potential near the origin is not well sampled by the wavefunction except at very
high energies and, hence, does not significantly affect any physical quantities except at such
energies.
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Appendix A. Evaluation of αk

Inverting the first member of (9) and putting in the explicit form of the eigenfunctions F
(α)
j (y),

we have for a = 1,

aj =
√

2
∫ 1

0
sin(jπy)H(1)(y) dy.

Assuming H(1)(y) is smooth, the large-j asymptotics are related to its behaviour at the end-
points of the interval. Integrating by parts gives

α1 = H(1)(1) = K(1, 1) = 1
2 (〈v〉 − 〈V 〉),

where the last step follows from (5). More generally, further integrations by parts yield

α2k+1 = (−1)k
d2kH(1)(y = 1)

dy2k
. (A.1)

The contributions at the lower limit vanish by virtue of (4) and its derivatives at y = 0.
All indications show that the derivatives in (A.1) scale nearly geometrically in k,

dkH(1)(y = 1)

dyk
∼ H0ρ

k.

This is confirmed numerically to be accurate up to at least the fourth-order derivatives. For the
example shown in figure 3, we find ρ ∼ 10. The order-of-magnitude of ρ can be understood
from a heuristic argument. There are two possible short length scales in the problem. The first,
β1, is given by the variation of v(x). For a Woods–Saxon potential, we have β1 = s, the surface
diffuseness. Second, there is the wavelength β2 ∼ v−1/2 given by the typical depth of v(x). In
general, one can expect the shortest length scale in K(x, y) and, hence, H(1)(y) = K(a, y), to
be given by β = min (β1, β2). Therefore ρ ∼ β−1. Thus one finds the estimate

α2k+1 ∼ (−1)k(a/β)2kα1, (A.2)

where factors of a have been inserted for dimensional consistency.
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Appendix B. Evaluation of infinite sums

Let āj be given by (16) with two terms α1 and α3. Consider the first sum in (16) which involves

∞∑
j=1

(−1)j+1

(jπ)k
sin(jπy)

for k = 1, 3. These can be evaluated analytically giving the result
∞∑

j=1

ājF
(1)
j = (α1 + α3/6)y − (α3/6)y3.

Other infinite sums may be handled in a similar way. For example, for Njl in (12), we can first
rewrite µ

(2)
j as

µ
(2)
j = γ0 + γ2

(j−1/2)2π2
+ 	µ

(2)
j ,

where γ0 = H(1)(a) is known. Inserting the result into (12), the γ0 term is summed to infinity,
giving

∞∑
k=1

MkjMklγ0 = δjlγ0.

The value of γ2 is fitted to the data to make the last term ∼j−4 and the term proportional to γ2

can be summed numerically to as many terms as needed. The 	µ
(2)
j contribution is summed

to j = J . In this way terms with j > J in the infinite sums are replaced by O(j−2) estimates.
Similarly, in the place of (9),

H(2)(y) = ξy +
∑

j

	bjF
(2)
j (y)

with ξ and 	bj given by

bj = (−1)j+1
√

2
ξ

(j − 1/2)2π2
+ 	bj.

The value of ξ is obtained by fitting bj and the resulting 	bj is found to be O(j−4)

asymptotically.
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